

Transforming inpatient children's outcomes by rapid precision medicine

Stephen Kingsmore MD DSc President & CEO Rady Children's Institute for Genomic Medicine

No conflict of interest

- Informed consent was obtained for this research.
- Patient and parent photos, videos, and names are used with their permission
- Illumina, Alexion and Diploid provided "in kind" support for part of this research

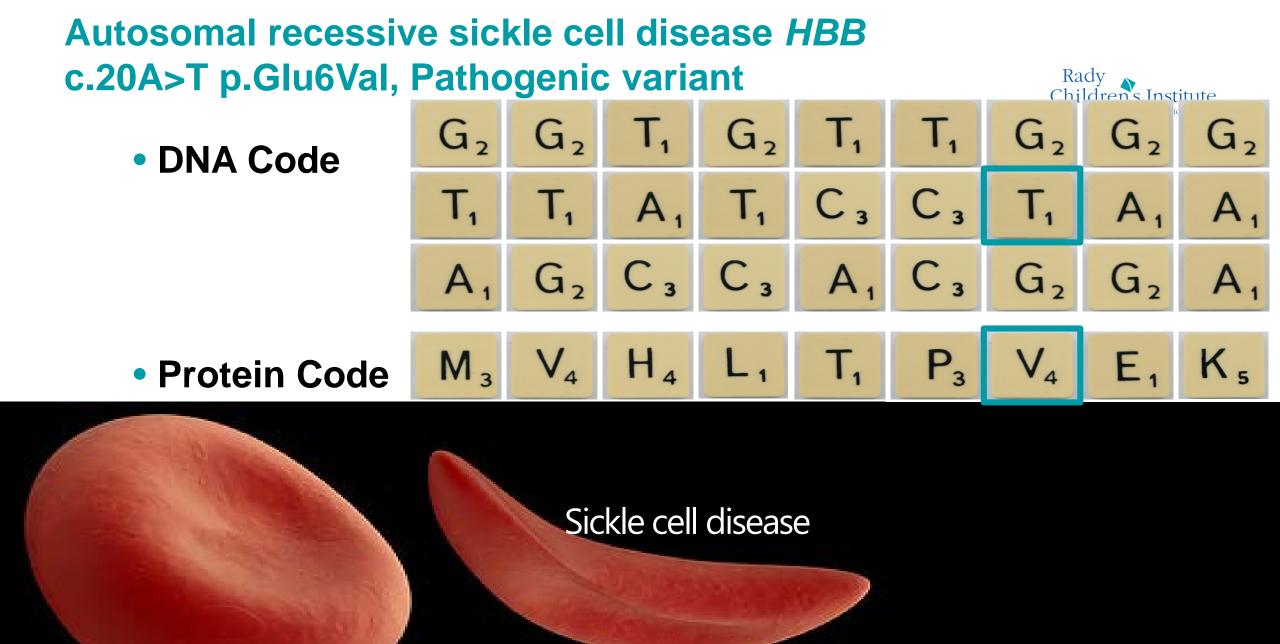
What is rapid precision medicine? Acute medical management guided by genome information

Nearly all of my 37 trillion cells contain 2 genomes of 3.3 billion nucleotides

"We are fearfully and wonderfully made" -- Psalm 139

How do you decode a genome?

Rapid Whole Genome Sequencing (40-fold, 16 hours)



Glossary: Rapid Whole Genome Sequencing – Rapidly decoding an individual's entire set of DNA molecules

Which children need their genomes sequenced rapidly?

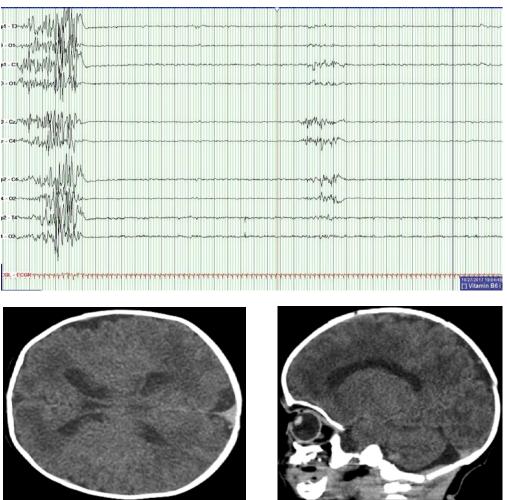
- Inpatient children with diseases of unknown etiology
 - Those suspected of having a genetic disease
 - 5,429 simple (or Mendelian) genetic diseases
 - 19,176 pathogenic structural/chromosomal/copy number variants
 - Leading cause of infant death
 - Leading cause of death in NICU / PICU
 - Many with effective treatments

Why are we focused on speed?

Time from receipt of blood sample to report of diagnosis: 19 hours

3pm, October 25, 2017 – NICU family 243

8-day-old ♂ admitted from ER Presenting Illness: *Status Epilepticus* History:


- 23-yo G2P1 healthy mother
- Fetal ventriculomegaly detected by ultrasound during pregnancy
- Delivery by uncomplicated C-section 39 1/7 weeks
- Breast-feeding well, discharged home on day of life 3

Glossary: Genetic disease – a disease caused by a DNA change(s)

NICU family 243: Initial NICU Workup

- Electroencephalogram: seizures & background burst suppression
- Brain computed tomography: mild hypoplasia of cerebellum; Borderline lateral ventriculomegaly
- Infection workup: negative
- Cerebrospinal fluid lactic acid 6.3 mmol/L (normal 1.1-2.8)
- Serum creatinine kinase 1,195 U/L (normal 13-80, not in acute renal failure range)

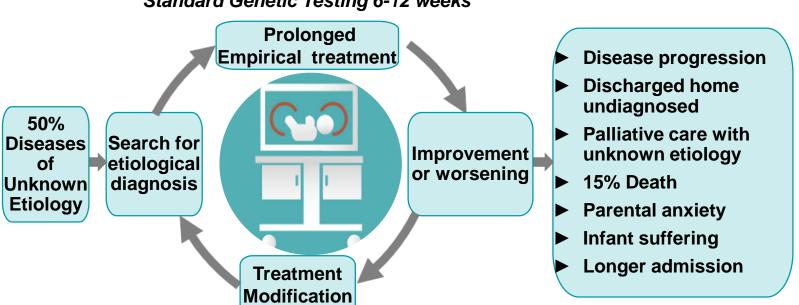
Disease Progressed Overnight

"Last night was rough with ongoing...multifocal seizures that continued despite...levetiracetam or phenobarbital"

- Maximal anti-epileptic drugs
- Worsening seizures
- No response to phenytoin, carbamazepine
- Midazolam drip increased until respiratory failure, emergent intubation

"I discussed with his parents the range of outcomes I have seen with Neonatal Burst Suppression encephalopathy which usually entails limited life expectancy and at least moderate to severe developmental disabilities."

Neonatal Seizures



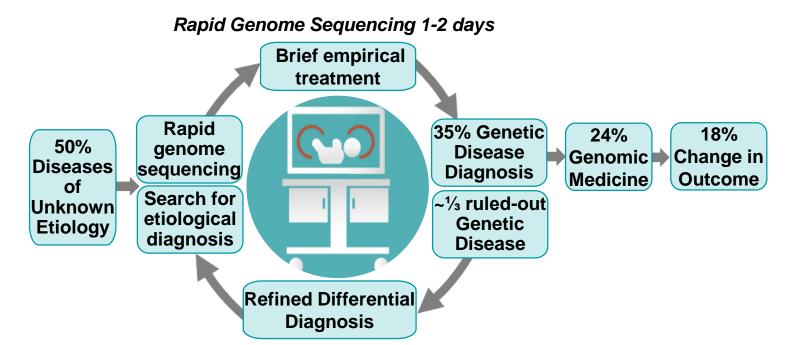
Cause of Neonatal Seizure*	
Hypoxic Ischemic Encephalopathy	38%
Ischemic Stroke	18%
Intracerebral Hemorrhage	12%
Genetic disease	10%
Infection	4%
Brain Malformation	4%
Metabolic disturbance	4%

 >1,250 genetic disorders are associated with neonatal seizures

Gene	Specific Treatment
ALDH7A1	Pyridoxine; lysine restriction; valine
	supplementation
GRIN2A	Memantine or dextromethorphan for gain
	of function variants
KCNQ2	Ezogabine for loss-of function variants;
	carbamazepine
KCNT1	Quinidine for gain of function variants
PNPO	Pyridoxal 5'phosphate
PRRT2	Oxcarbazepine; carbamazepine
SCN1A	Avoid sodium channel blockers
SCN2A; SCN8A	Phenytoin; high dose carbamazepine
SLC2A1	Ketogenic Diet
TSC1; TSC2	Vigabatrin
MOCS1	Cyclic pyranopterin monophosphate

60% of the NICU & PICU infants with genetic diseases are misdiagnosed/treated

Standard Genetic Testing 6-12 weeks


Radv

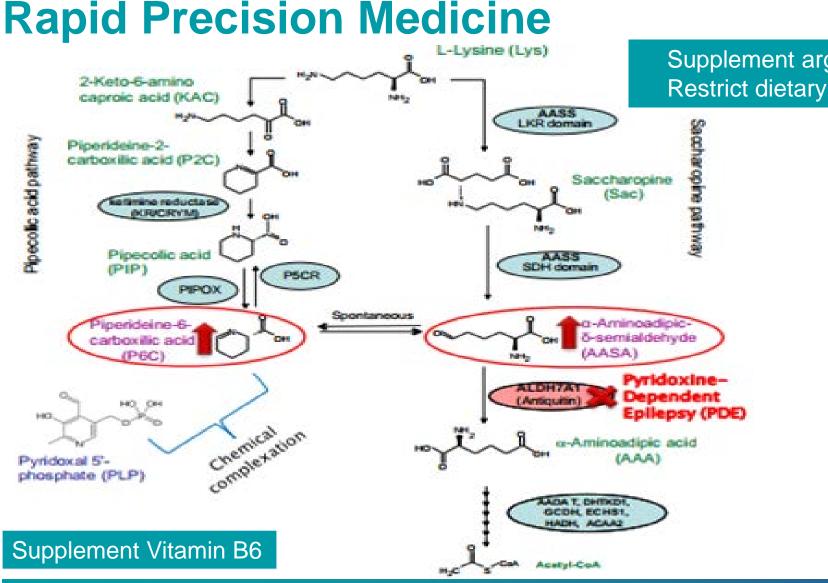
Children's Institute

Genomic Medicine

Summary: rWGS-based Genomic Medicine improves outcomes in children's ICUs

Diagnosis reported at 8pm October 27

- Disease: Pyridoxine-Dependent Epilepsy
- Gene: Aldehyde dehydrogenase 7 family member A1
- Inheritance Pattern: Autosomal Recessive
- Variants: 2 pathogenic variants


Genome variant (g.)
Chr5 g.125,919,689C>T
Chr5 g.125887751C>G

Gene variant (c.) ALDH7A1 c.328C>T ALDH7A1 c.1279G>C

Protein variant (p.) p.Arg110Ter p.Glu427Gln

C=Cytosine; T=Thymidine; G=Guanine Arg=Argenine; Ter=Termination Codon; Gln=glutamine; Glu=glutamic acid

Glossary: Gene – a sequence of nucleotides in a genome that codes for a protein Recessive – A disease expressed in offspring only when inherited from both parents

Supplement argenine **Restrict dietary lysine**

Coughlin CR et al. Mol Genet Metab 2015 116:35

Impact of diagnosis 55 hours after consent

Rady

Children

rens

Following triple therapy with pyridoxine, L-arginine supplementation and dietary lysine restriction

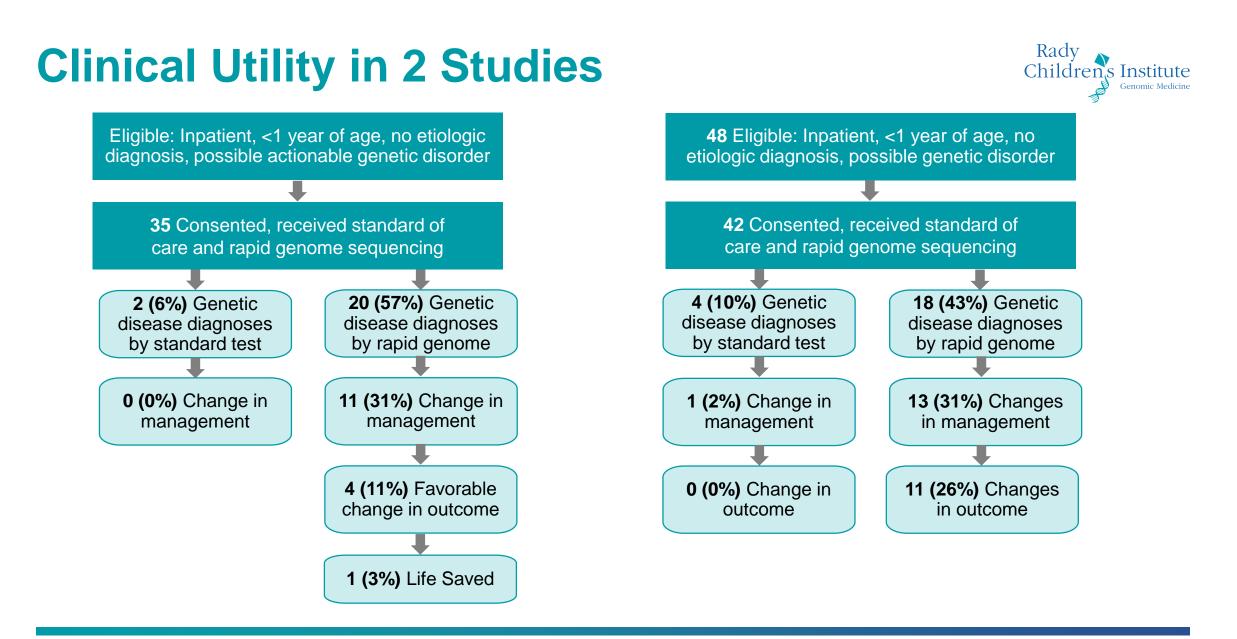
- Electroencaphalogram normalized
- Seizures stopped

Within 36 hours

- Extubated
- All anti-epileptic drugs stopped

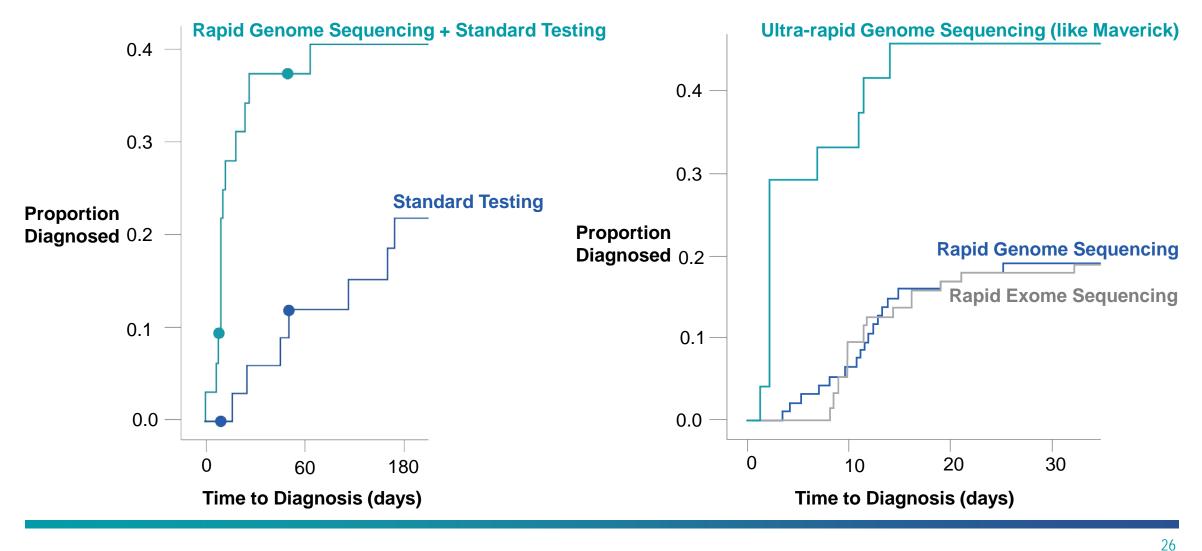
Discharged Home

Meeting milestones @ 22 months of age

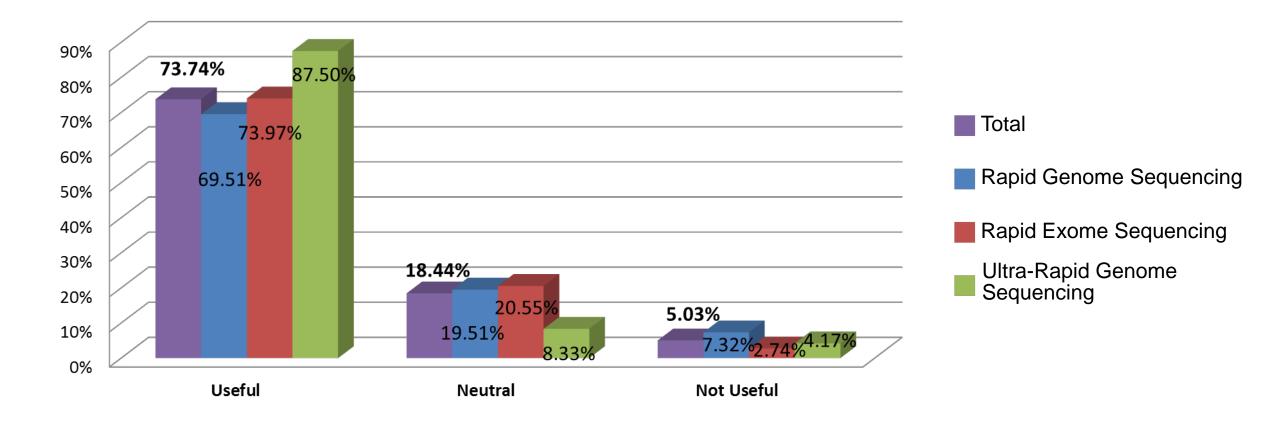

Rady

Children's Institute

Genomic Medicin

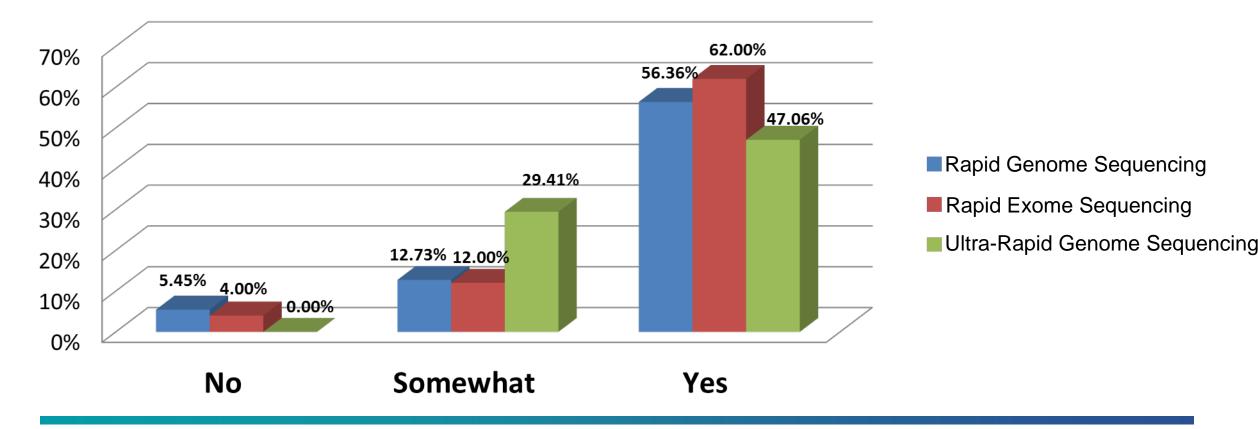

Video of Maverick and his Mum

Time to Diagnosis in 2 Studies

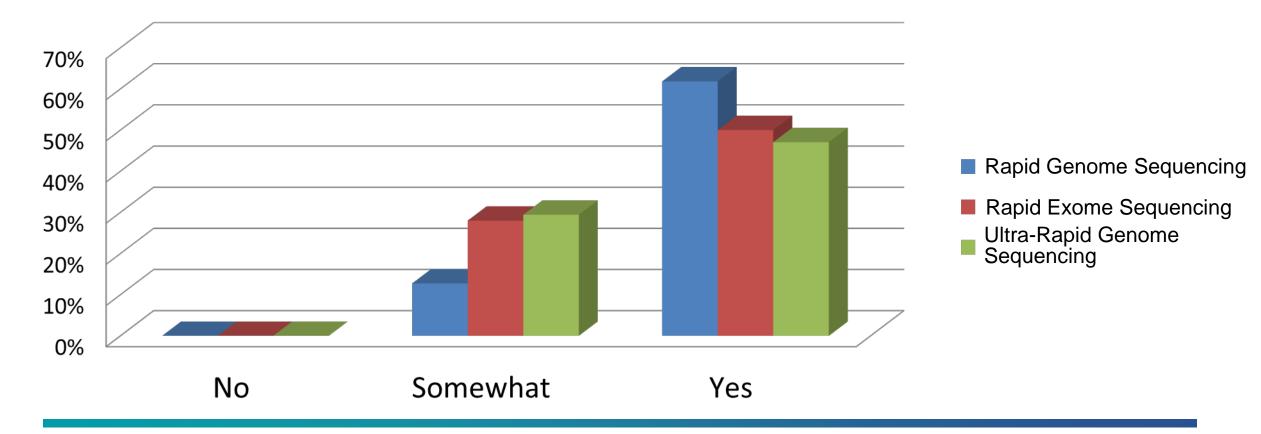

Petrikin et al. npj Genomic Med 2018 3:6

Kingsmore et al., AJHG In Press; ClinicalTrials.gov NCT03211039

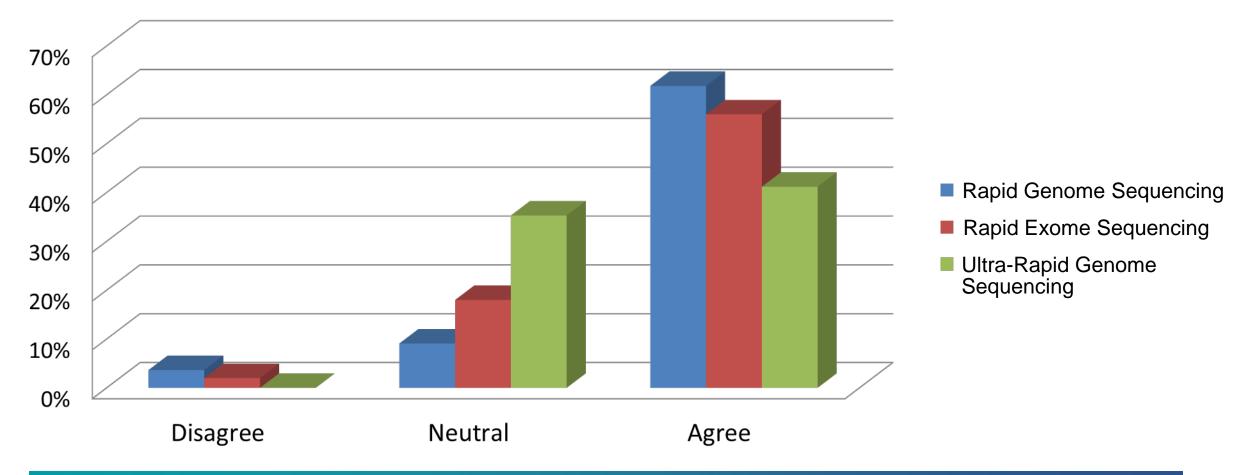
• Was rapid genome sequencing useful?

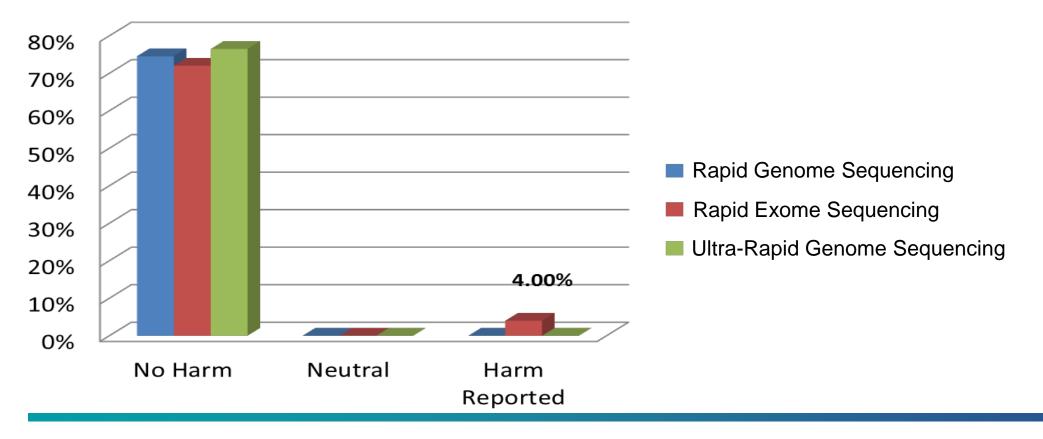

NSIGHT2 Clinician Survey Results

NSIGHT2 Acute Parent Survey Results

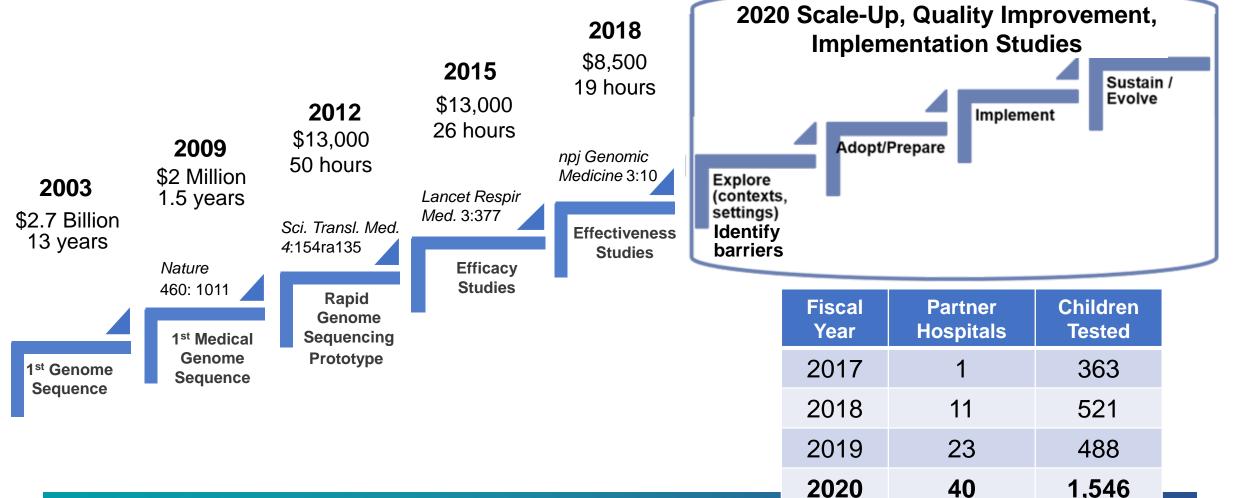

Did you feel your child's genome sequencing results were useful?

NSIGHT2 Acute Parent Survey Results


Did you understand your child's genome sequencing results?


• The choice to sequence did my child a lot of good

NSIGHT2 Acute Parent Survey Results



The choice to sequence did my child a lot of harm

Literature Review						Rady Childrens Institute Genomic Medicine			
1 st Author	Date	Study	Study Seq Type Type NICU and PICU Enrollment Criteria	NICU and PICU Enrollment Criteria	Size	Dx	Clinical	Change in	TAT
		Туре			Rate	Utility	Outcome	(d)	
Saunders	2102	Cases	WGS	NICU infants with suspected genetic disease	4	75%	n.d.	n.d.	2
Willig	2015	Cohort	WGS	<4 mo of age; Suspected actionable genetic disease	35	57%	31%	29%	23
Meng	2017	Cohort	WES	<100 days of life; Suspected genetic disease	63	51%	37%	19%	13
van Diemen	2017	Cohort	Panel	Infants; Suspected genetic disease	23	30%	n.d.	22%	12
Petrikin	2018	RCT	WGS	<4 mo of age; Suspected genetic disease	32	41%	22%	n.d.	13
Farnaes	2018	Cohort	WGS	infants; Suspected genetic disease	42	43%	31%	26%	23
Stark	2018	Cohort	WES	Acutely ill children with suspected genetic diseases	40	53%	30%	8%	16
Ceyhan-Birsoy	2019	RCT	WES	NICU neonates	32	16%	n.d.	n.d.	n.d.
Sanford	2019	Cohort	WGS	4 months-18 years; PICU; Suspected genetic disease	38	48%	39%	8%	14
French	2019	Cohort	WGS	Suspected genetic disease	195	21%	14%	n.d.	21
Clark	2019	Cases	WGS	Infants; Suspected genetic disease	7		100%	n.d.	1
	2019 RCT		WGS	Infants; disease of unknown etiology; within 96	94	19%			11
Kingsmore			WES		95	20%	in p	rogress	11
		WGS	hours of admission	24	46%			5	
Baby Bear	2019 (19 Cohort	MediCal infants; within 1 week of admission;	116	50%	30%	in progress		
		2019 ((**03	suspected genetic disease	110	JU/0	3070	
Average					840	34%	26%	18%	

Evolution of Rapid Precision Medicine in Infants in ICUs

Radv

Children's Institute

Genomic Medicine

Rapid Precision Medicine: A Healthcare System not a Test

Health System and Family Engagement

- Indications established
- Intuitive interface in EHR
- Automated site set-up, ascertainment, ordering, phenotyping
- QI: all sites

Early patient

ascertainment,

ordering, timely

authorization,

consent

Rapid Diagnosis

- QI: 1 day to result
- Semi-automated interpretation

Semi-automated

rWGS-based

genetic disease

diagnosis

- & re-analysis
- Variant, gene, disease dB

- QI: rate/timeliness of NGM, parental counselling, outcomes
- Semi-automated eCDSS
- NGM implementation services
- Automated follow-up of outcomes

- 1. Improved outcomes based on molecular diagnosis and genomic medicine
- 2. Knowledgebase of 10,000; natural history of disease with current treatment
- 3. N-of-few clinical trials of novel treatment bundles

Vermont Oxford Rady Children's Genomic Network

A learning network to shape the future of genomic medicine in newborn care.

Schedule of Activities

April 10, 2019

3:00 PM Eastern

Webinar: Bridging the Genomics Knowledge Gap: Introduction to Rapid Whole Genome Sequencing (rWGS) Presenting Faculty: Stephen Kingsmore, MD, DSc

July 10, 2019 3:00 PM Eastern Webinar: The Evolution of Genetic Testing and Its Clinical Application Presenting Faculty: Nathaly Sweeney, MD

September 11, 2019 3:00 PM Eastern Webinar: Genomic Network Case #1: Actionable Results to Guide Treatment Moderating Faculty: Shimul Chowdhury, PhD, FACMG

October 4, 2019

Genomic Medicine: 21st Century Care for Acutely III Infants pre-conference session at VON's Annual Quality Congress

November 20, 2019

3:00 PM Eastern

Webinar: Genomic Network Case #2: Parent Perspectives on Genomic Testing

Moderating Faculty: Nathaly Sweeney, MD

Join the Genomic Network

Summary

- Rapid precision medicine can be successfully implemented in the care of inpatient children
- Rapid turnaround allows for timely medical interventions in infants in ICUs
- Infants with seizures and/or encephalopathy of unknown etiology frequently benefit from rapid precision medicine

Acknowledgements: A Deo Iumen, ab amicis auxilium

Stephen Kingsmore MD, DSc Wendy Benson Charlotte Hobbs, MD, PhD David Dimmock MD

Leadership

Shimul Chowdhury PhD, FACMG, CGMB Yan Ding MD, MS Kasia Ellsworth PhD, FACMG Lauge Farnaes MD, PhD Karen Garman EdD, MAPP Shareef Nahas PhD,

FACMG, CGMB Julie Reinke Grace Sevilla, APR Mari Tokita MD Ray Veeraraghavan PhD Russell Nofsinger, PhD

Clinical Genome Center

Zaira Bezares Jennie Le Maria Ortiz-Arechiga Laura Puckett Luca Van Der Kraan Catherine Yamada

Genome Analysts

Michelle Clark PhD Kiely James PhD Terence Wong PhD Meredith Wright PhD

Clinical Trial Team

Sara Caylor RN, BSN Christina Clarke RN, BSN Mary Gaughran RN Jerica Lenberg MS, LCGC Lisa Salz MS, LCGC Kelly Watkins MS, LCGC

Clinicians / Researchers

Matthew Bainbridge PhD Jeanne Carroll MD **Tina Chambers PhD** Michele Feddock, CCRP Jennifer Friedman MD Joseph Gleeson MD, PhD Iris Reves Jonathan Sebat PhD Nathaly Sweeney MD Robert Wechsler-Reya PhD Kristin Wigby MD Amelia Lindgren, MD Erica Sanford, MD Kate Perofsky, MD Kathy Bouic Linda Luo Lauren Curley

Information Technology

Josh Braun Serge Batalov Carlos Diaz Raymond Hovey PhD Dana Mashburn Patrick Mulrooney, MAS Danny Oh Albert Oriol Dorjee Tamang Daniken Orendain

Administration

Amanda Abbott Esq Christine Moran Ellen Montgomery Olivia Simonides Stacey Huynh Sylvia Breeding Rachel Burgess Joey Principato Leila Schwanemann Cheyenne Camp Bryce Waldman

Collaboration with:

Radv

Children's Institute

Genomic Medicine

Rady Children's Hospital State of California UC San Diego Health Illumina, Inc. National Institutes of Health

- NICHD
- NHGRI
- NIDDK

The Liguori Family John Motter and Effie Simanikas Ernest and Evelyn Rady

Children's Mercy Hospital

John Lantos Julie Cakici Josh Petrikin Laurel Willig Emily Farrow Neil Miller Carol Saunders Steve Leeder